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Abstract. The radiation of plane harmonic sound waves from a rigid stepped cylindrical waveguide is treated
by using the mode-matching method in conjunction with theWiener-Hopf technique. The solution is exact, but
formal, since infinite series of unknowns and some branch-cut integrals with unknown integrands are involved.
Approximation procedures based on rigorous asymptotics are used and the approximate solution to the Wiener-
Hopf equations is derived in terms of infinite series of unknowns, which are determined from infinite systems of
linear algebraic equations. Numerical solutions of these systems are obtained for various values of the parameters
of the problem and their effects on the directivity of the stepped waveguide is presented.
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1. Introduction

Different types of acoustic or electromagnetic stepped waveguides are commonly used as
loudspeakers or as primary feeds in reflector-antenna systems used in microwave communica-
tions. To analyze the performance of such radiators, one needs to know accurately their near-
and far-field patterns.

The radiation characteristics of circular waveguides have been the subject of numerous
past investigations. The first rigorous analytical solution of the radiation from a semi-infinite,
infinitely thin unflanged circular rigid pipe, was obtained by Levine and Schwinger [1]. Later
Ando [2] considered the same problem, in the case of non-vanishing wall thickness. Rawl-
ins [3] investigated the radiation of sound from a rigid cylindrical duct with an acoustically
absorbing internal surface. The analysis reported in [2] was recently generalized by Büyükak-
soy and Polat [4] to the case where the inner and outer surfaces of the pipe are impedance
boundaries.

Notice that the acoustic properties of slowly varying and stepped cylindrical ducts have
been tackled by Nayfeh and Telionis [6], Rienstra [6] and Nilsson and Brander [7]. In [7], the
reflection and transmission of sound in a cylindrical waveguide with a jump in its diameter is
treated through the Wiener-Hopf technique.

The aim of this work is to study the pressure directivity of an open-ended stepped circular
pipe asymptotically. To this end we consider the problem of plane harmonic sound waves
propagating out of a semi-infinite duct, via an other coaxial cylindrical duct of finite length and
bigger radius and then issuing into free space. Note that a similar electromagnetic radiation
problem has been considered by Birbir, Büyükaksoy and Chumachenko [8] for the case of a
two-dimensional box-like horn. The method adopted here is similar to that employed in [8]
and consists of expressing the total field in the waveguide region in terms of normal waveguide
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Figure 1. Stepped cylindrical waveguide

modes and using the Fourier Transform elsewhere. Then, the related boundary-value problem
is formulated as a Modified Wiener-Hopf Equation of the third kind and then reduced to a
pair of simultaneous Fredholm integral equations of the second kind which are susceptible
to a treatment by iterations. The formal solution involves branch-cut integrals with unknown
integrands and infinitely many unknown expansion coefficients satisfying infinite systems of
linear algebraic equations. The branch-cut integrals are evaluated asymptotically for large
values of the acoustical length of the finite duct and the linear systems of algebraic equations
are solved numerically for various values of the parameters of the problem, such as the radii
of the ducts and the acoustical length of the finite waveguide and their effects on the radiation
phenomenon are shown graphically. The results are found to be in good agreement with the
experimental ones related to the circular-pipe horn loudspeaker reported by Ando [9]

Notice also that the present acoustic radiation problem can also be considered as a good
starting point for the analysis of the corresponding electromagnetic problem, that is the circu-
lar cylindrical-horn antenna.

The time dependence is assumed to be exp (−iωt), with ω being the angular frequency,
and is suppressed throughout the paper.

2. Analysis

Consider the radiation of a time-harmonic plane sound wave propagating along the positive
z direction from an acoustically rigid cylindrical horn defined by {ρ = a , z ∈ (−∞, 0)} ∪
{ρ ∈ (a, b) , z = 0}∪ {ρ = b , z ∈ (0, l)}, where (ρ, φ, z) denote the usual cylindrical polar
coordinates (see Figure 1).

From the symmetry of the geometry of the problem and of the incident field, the acoustic
field will be independent of φ everywhere. We shall therefore introduce a scalar potential
u (ρ, z) which defines the acoustic pressure and velocity by p = iωρ0u and v = grad u,
respectively, where ρ0 is the density of the undisturbed medium.

Let the incident field be given by

ui = exp (ikz) , (1)
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where k = ω/c denotes the wave number. For the sake of analytical convenience we will
assume that the surrounding medium is slightly lossy and k has a small positive imaginary
part. The lossless case can be obtained by letting Imk → 0 at the end of the analysis.

The total field uT (ρ, z) can be written as

uT (ρ, z) =




u1 (ρ, z) ; ρ > b, z ∈ (−∞,∞)

u2 (ρ, z) ; ρ ∈ (a, b) , z < 0

u3 (ρ, z) + ui (ρ, z) ; ρ ∈ (0, a) , z < 0

u4 (ρ, z) ; ρ ∈ (0, b) , z ∈ (0, l)

u5 (ρ, z) ; ρ ∈ (0, b) , z > l,

(2)

where ui is the incident field as given by (1) and uj (ρ, z), j = 1 − 5, denote the scattered
fields uj (ρ, z), j = 1 − 5, which satisfy the Helmholtz equation[

1

ρ

∂

∂ρ

(
ρ

∂

∂ρ

)
+ ∂2

∂z2
+ k2

]
uj(ρ, z) = 0, j = 1, 2, 3, 4, 5, (3)

is to be determined with the help of the following boundary and continuity relations:

∂

∂ρ
u1(b, z) = 0, zε(0, l),

∂

∂ρ
u2(a, z) = 0, z < 0, (4a,b)

∂

∂ρ
u3(a, z) = 0, z < 0,

∂

∂ρ
u4(b, z) = 0; z ∈ (0, l) , (4c,d)

∂u2

∂z
(ρ, 0) = 0; ρ ∈ (a, b) ,

∂u4

∂z
(ρ, 0) = 0; ρ ∈ (a, b) , (4e,f)

u1(b, z) = u2(b, z); z < 0,
∂u1

∂ρ
(b, z) = ∂u2

∂ρ
(b, z); z < 0, (4g,h)

u1(b, z) = u5(b, z); z > l,
∂u1

∂ρ
(b, z) = ∂u5

∂ρ
(b, z); z > l, (4i,j)

u3(ρ, 0) + ui(0) = u4(ρ, 0); ρ ∈ (0, a) , (4k)

∂

∂z
u3(ρ, 0) + ∂

∂z
ui(0) = ∂

∂z
u4(ρ, 0); ρ ∈ (0, a) , (4l)

u4(ρ, l) = u5(ρ, l); ρ ∈ (0, b),
∂u4

∂z
(ρ, l) = ∂u5

∂z
(ρ, l); ρ ∈ (0, b). (4m,n)

To ensure the uniqueness of the mixed boundary-value problem stated by (3) and (4a–n), one
has to take into account the following radiation and edge conditions:

u ∼ eikr

r
, r =

√
ρ2 + z2 → ∞, (5)

uT (b + 0, z) = O(1), z → −0, (6a)
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∂

∂ρ
uT (b + 0, z) = O(z−1/3), z → −0, (6b)

uT (b, z) = O(1), z → l + 0, (6c)

∂

∂ρ
uT (b, z) = O((z − l)−1/2), z → l + 0. (6d)

2.1. REDUCTION TO A MODIFIED WIENER-HOPF EQUATION

In the region ρ > b, the scattered field u1(ρ, z) satisfies the Helmholtz equation for z ∈
(−∞,∞). Multiplying (3) by eiαz with α being the Fourier-transform variable and integrating
the resultant equation with respect to z from −∞ to ∞, we obtain[

1

ρ

d

dρ

(
ρ

d

dρ

)
+ (k2 − α2)

]
F(ρ, α) = 0, (7a)

where

F(ρ, α) = F−(ρ, α) + F1(ρ, α) + eiαlF+(ρ, α). (7b)

F+(ρ, α), F−(ρ, α) and F1(ρ, α) are defined by

F−(ρ, α) =
0∫

−∞
u1(ρ, z)eiαzdz, F+(ρ, α) =

∞∫
l

u1(ρ, z)eiα(z−l)dz, (7c,d)

and

F1(ρ, α) =
l∫

0

u1(ρ, z)eiαzdz, (7e)

respectively. Owing to the analytical properties of Fourier integrals, F+(ρ, α) and F−(ρ, α)

are regular functions in the upper half-plane Imα > Im(−k) and in the lower half-plane
Imα < Imk, respectively, while F1(ρ, α) is an entire function.

The solution of (7a) satisfying the radiation condition for ρ > b reads

F−(ρ, α) + F1(ρ, α) + eiαlF+(ρ, α) = −A(α)
H

(1)
0 (Kρ)

K(α)H
(1)
1 (Kb)

(8a)

with

K(α) =
√

k2 − α2. (8b)

In (8a), H(1)
n stands for the Hankel function of the first kind and n-th order, given by

H(1)
n = Jn + iYn (8c)

while A(α) is a spectral coefficient to be determined. The square-root function K(α) is defined
in the complex α-plane cut as shown in Figure 2 such that K(0) = k.

Consider now the Fourier transform of (4a), namely
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Figure 2. Branch-cuts and integration lines in the complex plane

Ḟ1(b, α) = 0 (9)

where the dot specifies the derivative with respect to ρ. The differentiation of (8a) with respect
to ρ yields

Ḟ−(ρ, α) + Ḟ1(ρ, α) + eiαlḞ+(ρ, α) = A(α)
H

(1)

1 (Kρ)

H
(1)

1 (Kb)
. (10)

Setting ρ = b in (10) and using (9), we obtain

A(α) = Ḟ−(b, α) + eiαlḞ+(b, α). (11a)

Now the elimination of A(α) between (8a) and (11a) gives

F−(b, α) + eiαlF+(b, α) = −F1(b, α) − H
(1)
0 (Kρ)

KH
(1)
1 (Kb)

[
Ḟ−(b, α) + eiαlḞ+(b, α)

]
. (11b)

In the regions a < ρ < b , z < 0 and 0 < ρ < b, z > l, the scattered fields u2(ρ, z) and
u5(ρ, z) satisfy the Helmholtz equation in (3) whose solutions read(

1

ρ

d

dρ
(ρ

d

dρ
) + K2(α)

)
G− (ρ, α) = iαf (ρ) (12a)

and(
1

ρ

d

dρ
(ρ

d

dρ
) + K2(α)

)
G+ (ρ, α) = g(ρ) − iαh(ρ), (12b)

respectively, where the boundary condition (4e) satisfied on the rigid end has been taken into
account. In (12a) and (12b), G+(ρ, α) and G−(ρ, α) are defined by:

G+(ρ, α) =
∞∫
l

u5(ρ, z)eiα(z−l)dz (12c)

and
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G−(ρ, α) =
0∫

−∞
u2(ρ, z)eiαzdz, (12d)

respectively, while f (ρ), g(ρ) and h(ρ) stand for

f (ρ) = u2(ρ, 0), g(ρ) = ∂

∂z
u5(ρ, l), h(ρ) = u5(ρ, l). (12e,f,g)

G+(ρ, α) and G−(ρ, α) are regular functions in the upper (Imα > Im(−k)) and lower
(Imα > Im(−k)) halves of the α-plane.

Particular solutions to (12a) and (12b) can be found easily by using the Green’s function
technique. The Green’s function related to (12a) satisfies the Helmholtz equation[

1

ρ

d

dρ

(
ρ

d

dρ

)
+ K2(α)

]
G1(ρ, α) = 0, ρ �= t , ρ, t ∈ (a, b) (13a)

with the following conditions:

G1(t + 0, t, α) = G1(t − 0, t, α), (13b)

∂

∂ρ
G1(t + 0, t, α) − ∂

∂ρ
G1(t − 0, t, α) = 1

t
, (13c)

∂

∂ρ
G1(b, t, α) = 0,

∂

∂ρ
G1(a, t, α) = 0. (13d,e)

The solution is

G1 (ρ, t, α) = 1

M(α)
Q1 (ρ, t, α) (14a)

with

Q1 (ρ, t, α) = π

2




[J0(Kρ)Y1(Ka)− J1(Ka)Y0(Kρ)]

× [J0(Kt)Y1(Kb) − J1(Kb)Y0(Kt)] , a ≤ ρ ≤ t

[J0(Kρ)Y1(Kb)− J1(Kb)Y0(Kρ)]

× [J0(Kt)Y1(Ka) − J1(Ka)Y0(Kt)] , t ≤ ρ ≤ b

(14b)

and

M(α) = [J1(Ka)Y1(Kb) − J1(Kb)Y1(Ka)] . (14c)

The solution of (12a) can now be written as

G−(ρ, α) = 1

M(α)


D1(α)

K(α)
[J0(Kρ)Y1(Ka) − Y0(Kρ)J1(Ka)] + iα

b∫
a

f (t)Q1(t, ρ, α)tdt


.

(15)

Similarly, to obtain the particular solution of (12b), we will use again the Green’s function
technique. The Green function satisfying the Helmholtz equation
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1

ρ

d

dρ

(
ρ

d

dρ

)
+ K2(α)

)
G2 (ρ, t, α) = 0, ρ �= t, ρ, t ∈ (0, b) (16a)

under the following conditions

G2(0, t, α) ∼ bounded, G2(t + 0, t, α) = G2(t − 0, t, α), (16b,c)

∂

∂ρ
G2(t + 0, t, α) − ∂

∂ρ
G2(t − 0, t, α) = 1

t
,

∂

∂ρ
G2(b, t, α) = 0, (16d,e)

is

G2 (ρ, t, α) = 1

J1(Kb)
Q2 (ρ, t, α) (17a)

with

Q2 (ρ, t, α) = π

2

{
J0(Kρ) [J1(Kb)Y0(Kt) − J0(Kt)Y1(Kb)] , 0 ≤ ρ ≤ t

J0(Kt) [J1(Kb)Y0(Kρ) − J0(Kρ)Y1(Kb)] , t ≤ ρ ≤ b
. (17b)

Now, G+(ρ, α) reads

G+(ρ, α) = 1

J1(Kb)


D2(α)

K(α)
J0(Kρ) +

b∫
0

[
g(t) − iαh(t)

]
Q2(t, ρ, α)tdt


 . (18)

In (15) and (18), D1(α) and D2(α) are spectral coefficients to be determined while f, g and h

are given by (12d), (12e) and (12f), respectively. Differentiating (15) and (18) with respect to
ρ, we obtain

Ġ−(ρ, α) = −1

M(α)


D1(α) [J1(Kρ)Y1(Ka) − Y1(Kρ)J1(Ka)] − iα

b∫
a

f (t)Q̇1(t, ρ, α)tdt




(19a)

and

Ġ+(ρ, α) = −1

J1(Kb)


D2(α)J1(Kρ) −

b∫
0

[
g(t) − iαh(t)

]
Q̇2(t, ρ, α)tdt


 . (19b)

The continuity relations in (4b) and (4d) require

Ḟ−(b, α) = Ġ−(b, α), Ḟ+(b, α) = Ġ+(b, α). (20a,b)

Replacing Ġ+(b, α) and Ġ−(b, α) appearing in (20a) and (20b) by their expressions given in
(19a) and (19b), respectively, we can solve D1(α) and D2(α) uniquely as

Ḟ−(b, α) = D1(α), Ḟ+(b, α) = −D2(α). (21a,b)

By substituting D1(α) and D2(α) given by (21a) and (21b) in (15) and (18) we get

G−(ρ, α) = 1

M(α)


Ḟ−(b, α)

K(α)
[J0(Kρ)Y1(Ka) −Y0(Kρ)J1(Ka)]+ iα

b∫
a

f (t)Q1(t, ρ, α)tdt




(22a)
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Figure 3. The location of the zeros αm and δm in the complex plane for k = 1, a = 1 and b = 4·5.

and

G+(ρ, α) = 1

J1(Kb)


− Ḟ+(b, α)

K(α)
J0(Kρ) +

b∫
0

[
g(t) − iαh(t)

]
Q2(t, ρ, α)tdt


 . (22b)

The left-hand sides of (22a) and (22b) are regular in the half-planes Im(α) < Im(k) and
Im(α) > Im(−k) respectively. By using the following relations

Jν

(
eiπz

) = eiνπJν (z) , Yν

(
eiπz

) = e−iνπYν (z) + 2i cos νπJν (z) (22c)

one can easily check that the right-hand sides of (22a) and (22b) are continuous across the
branch-cuts lying in the lower and upper halves of the complex α-plane and consequently
have no branch-points in their respective regions of analyticity. However, their regularity may
be violated by the presence of simple poles lying in the lower and upper half planes, namely
at α = −δm (Imδm > Imk) and α = αm, (Imαm > Imk), respectively, with

J1(Zma)Y1(Zmb) − J1(Zmb)Y1(Zma) = 0, Zm = K (δm) , m = 0, 1, 2, . . . (23a)

and

J1(ξm) = 0, αm =
√

k2 − (ξm/b)2, m = 0, 1, 2, . . . . (23b)

Equations (22a) and (22b) are indeed regular at α = −δm and α = αm in their respective
regions of regularity, if we have

Ḟ−(b,−δm) = − iπ

2
δmZm

J1(Zmb)

J1(Zma)

b∫
a

f (t) [J1(Zma)Y0(Zmt)

−J0(Zmt)Y1(Zma)] tdt, m = 0, 1, 2, . . . ,

(24)
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Ḟ+(b, αm) = −π

2

ξm

b
Y1(ξm)

b∫
0

[
g(t) − iαh(t)

]
J0(

ξm

b
t)tdt, m �= 0, (25a)

Ḟ+(b, k) = 1

b

b∫
0

[
g(t) − ikh(t)

]
tdt, m = 0. (25b)

Using the continuity relations in (4g) and (4i),we write

F−(b, α) + eiαlF+(b, α) = G−(b, α) + eiαlG+(b, α). (26)

Recalling (11b), we obtain

−b

2
F1(b, α) + Ḟ−(b, α)

Q (α)K2(α)
+ eiαlḞ+(b, α)

K(α)R (α)
= − iα

2K(α)M(α)

b∫
a

f (t) [Y1(Ka)J0(Kt)

−J1(Ka)Y0(Kt)] tdt + eiαl

2K(α)J1(Kb)

b∫
0

[
g(t) − iαh(t)

]
J0(Kt)tdt

(27a)

with

R(α) = iπJ1(Kb)H
(1)

1 (Kb) and Q(α) = H
(1)
1 (Ka)

πH
(1)

1 (Kb)M(α)
. (27b,c)

Since f (t), g(t) and h(t) are absolutely integrable functions satisfying Dini conditions,
they can be expanded into series of the following complete sets of orthogonal functions [10,
p.453 and p.449].

f (t) =
∞∑

m=0

fm [J1(Zma)Y0(Zmt) − Y1(Zma)J0(Zmt)] (28a)

and

g(t) =
∞∑

m=0

gmJ0(
ξm

b
t), h(t) =

∞∑
m=0

hmJ0(
ξm

b
t), (28b,c)

where fm, gm and hm are related to f (t), g(t) and h(t) through [10, p.453 and p.449]

fm = π2

2

J 2
1 (Zmb)Z2

m

J 2
1 (Zma) − J 2

1 (Zmb)

b∫
a

f (t) [J1(Zma)Y0(Zmt) − Y1(Zma)J0(Zmt)] tdt, (29)

gm = 2

b2J 2
0 (ξm)

b∫
0

g(t)J0(
ξm

b
t)tdt, m �= 0, (30a)

g0 = 2

b2

b∫
0

g(t)tdt, m = 0, (30b)
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and

hm = 2

b2J 2
0 (ξm)

b∫
0

h(t)J0(
ξm

b
t)tdt, m �= 0, (30c)

h0 = 2

b2

b∫
0

h(t)tdt, m = 0. (30d)

By taking into account (23),(24a,b) and (29), and (30a-d), we can express fm, gm and hm in
terms of Ḟ+(a, αm) and Ḟ−(a,−αm) as follows:

fm = πZm

iδm

J1(Zma)J1(Zmb)

J 2
1 (Zmb) − J 2

1 (Zma)
Ḟ−(b,−δm) (31a)

and

gm − iαmhm = −2

b

Ḟ+(b, αm)

J0(ξm)
, g0 − iα0h0 = −2

b
Ḟ+(b, k). (31b,c)

By using the edge conditions, the asymptotic expressions of the Bessel’s functions valid for
large arguments and the following asymptotic estimates (see [11])

δm = imπ

b − a
+ O

(
1

m

)
, αm = imπ

b
+ iπ

4b
+ O

(
1

m

)
m → ∞, (31d)

we can show easily that

fm = O
(

e−mπ
[
(b − a) / (mπ)

]2/3
)

gm/ (iαm) − hm = O
(
e−mπ/b/ (mπ/b)

)
, m → ∞.

(31e)

Substituting (28a-c) and (29), (30a-d) in (27a) and evaluating the resulting integrals, we
obtains the following Modified Wiener-Hopf Equation (MWHE) of the third kind valid in the
strip Im(−k) < Im(α) < Im(k)

−b

2
F1(b, α) + Ḟ−(b, α)

K2(α)
Q(α) + eiαlḞ+(b, α)

K2(α)R(α)
= iα

π

∞∑
m=0

J1(Zma)

J1(Zmb)

fm

Zm

1

δ2
m − α2

+eiαl b

2

∞∑
m=0

J0(ξm)

α2
m − α2

[
gm − iαhm

]
.

(32)

2.2. APPROXIMATE SOLUTION OF THE MODIFIED WIENER-HOPF EQUATION FOR

kl >> 1

By using the factorization and the decomposition procedures, together with the Liouville
theorem, the modified Wiener-Hopf equation in (32) can be reduced to the following system
of Fredholm integral equations of the second kind:

Ḟ+(b, α)

(k + α)R+(α)
= − 1

2πi

∫
L+

Ḟ−(b, τ)R−(τ )Q(τ)e−iτ l

(k + τ)(τ − α)
dτ

+b

2

∞∑
m=0

J0(ξm)
[
gm + iαmhm

]
(k + αm)R+(αm)

2αm(α + αm)
− i

2π

∞∑
m=0

J1(Zma)

J1(Zmb)

fm

Zm

k + δm

δm + α
R+(δm)eiδml,

(33a)
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Ḟ−(b, α)Q−(α)

(k − α)
= 1

2π i

∫
L−

Ḟ+(b, τ)eiτ l

(k − τ)R(τ)Q+(τ )(τ − α)
dτ

−b

2

∞∑
m=0

J0(ξm)
[
gm − iαmhm

]
(k + αm)eiαml

2αm(α − αm)Q+(αm)
+ i

2π

∞∑
m=0

J1(Zma)

J1(Zmb)

fm

Zm

k + δm

δm − α

1

Q+(δm)
,

(33b)

where the paths of integration L+ and L− are depicted in Figure 2. Here, R+(α),Q+ (α) and
R−(α) = R+(−α),Q− (α) = Q+ (−α) are the split functions, regular and free of zeros
in the upper (Imα > Im (−k)) and lower (Imα < Imk) halves of the complex α-plane,
respectively, resulting from the Wiener-Hopf factorization of R(α) and Q(α) which are given
by (26b) and (26c), in the following form:

R(α) = R+(α)R−(α), Q(α) = Q+(α)Q−(α). (34a,b)

The explicit expressions for R+(α) and Q+(α) can be obtained by using the results of [4],
[11] and [12] as follows:

R+(α) =
[
π iJ1(kb)H

(1)

1 (kb)
]1/2

exp

{
i
αb

π

[
1 − γ + log(

2π

kb
) + i

π

2

]
− i

kb

2

}

× exp

{
K(α)b

π
log(

α + iK(α)

k
) + q1(α)

} ∞∏
m=1

(1 + α

αm

) exp(
iαb

mπ
),

(35a)

Q+(α) =
[

H
(1)
1 (ka)

πH
(1)

1 (kb) [J1(ka)Y1(kb) − J1(kb)Y1(ka)]

]1/2

×
∞∏

m=1

1

(1 + α/δm)e−α/δm
exp

[
ik(b − a)

2
+ K (α) (a − b)

π
log

α + iK (α)

k
+ q2(α) − q1(α)

]

exp

{
α

π i
(b − a)

[
1 − γ + log

(
2π i

k (b − a)

)]}
, (35b)

where γ is the Euler’s constant given by γ = 0·57721 . . . and q1,2(α) stands for

q1(α) = 1

π
P

∞∫
0

[
1 − 2

πx

1

J 2
1 (x) + Y 2

1 (x)

]
log

(
1 + αb[

(kb)2 − x2
]1/2

)
dx (35c)

q2(α) = 1

π
P

∞∫
0

[
1 − 2

πx

1

J 2
1 (x) + Y 2

1 (x)

]
log

(
1 + αa[

(ka)2 − x2
]1/2

)
dx. (35d)

In (35c,d), the letter P denotes the Cauchy principle value at the singularities x = ka and
x = kb. Note that, when we let |α| → ∞ in their respective regions of regularity, we have

R±(α) ∼ (±α)−1/2, Q±(α) = (±α)1/2. (35e,f)

For kl >> 1, the coupled system of Fredholm integral equations of the second kind in (33a)
and (33b), is susceptible to a treatment by iterations.
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Ḟ+(b, α) = Ḟ
(1)
+ (b, α) + Ḟ

(2)
+ (b, α) + · · · (36a)

Ḟ−(b, α) = Ḟ
(1)
− (b, α) + Ḟ

(2)
− (b, α) + · · · (36b)

The first iteration gives

Ḟ
(1)
+ (b, α)

(k + α)R+(α)
= b

2

∞∑
m=0

J0(ξm)
[
gm + iαmhm

]
(k + αm)R+(αm)

2αm(α + αm)

− i

2π

∞∑
m=0

Sm

k + δm

δm + α
R+(δm)eiδml

(37a)

and

Ḟ
(1)
− (b, α)Q−(α)

(k − α)
= −b

2

∞∑
m=0

J0(ξm)
[
gm − iαmhm

]
(k + αm)eiαml

2αm(α − αm)Q+(αm)

+ i

2π

∞∑
m=0

Sm

k + δm

δm − α

1

Q+(δm)
,

(37b)

while the second iteration reads

Ḟ
(2)
+ (b, α)

(k + α)R+(α)
= −b

2

∞∑
m=0

J0(ξm)
[
gm − iαmhm

]
(k + αm)eiαml

2αmQ+(αm)
I1(α)

+ i

2π

∞∑
m=0

Sm

k + δm

Q+(δm)
I2(α),

(38a)

Ḟ
(2)
− (b, α)Q−(α)

(k − α)
= b

2

∞∑
m=0

J0(ξm)
[
gm + iαmhm

]
(k + αm)R+(αm)

2αm

I3(α)

− i

2π

∞∑
m=0

Sm(k + δm)R+(δm)eiδmlI4(α),

(38b)

with

I1(α) = − 1

2π i

∫
L+

R−(τ )Q(τ)(k − τ)e−iτ l

(k + τ)(τ − αm)Q−(τ )

dτ

(τ − α)
, (39a)

I2(α) = − 1

2π i

∫
L+

R−(τ )Q(τ)(k − τ)e−iτ l

Q−(τ )(δm − τ)(k + τ)

dτ

(τ − α)
, (39b)

I3(α) = 1

2π i

∫
L−

R+(τ )(k + τ)eiτ l

(k − τ)R(τ)Q+(τ )(τ + αm)

dτ

(τ − α)
, (39c)

I4(α) = 1

2π i

∫
L−

R+(τ )(k + τ)eiτ l

(k − τ)R(τ)Q+(τ )(δm + τ)(τ − α)
dτ, (39d)
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and

Sm = J1 (Zma)

J1 (Zmb)

fm

Zm

. (39e)

Consider first the asymptotic evaluation of I1(α) for kl � 1. According to Jordan’s Lemma,
the integration line L+ can be deformed onto the branch-cut C1 +C2 +Cε through the branch
point τ = −k (see Figure 2). During this deformation one crosses the poles occurring at the
zeros of J1(Ka), lying in the lower half-plane, namely: τ = −αm where αm is given by (22b).
The residue contribution of these poles and the contribution from Cε are

I1res(α) = 2kπb2

(a2 − b2)

R+(k)eikl

Q+(k)(k + α)(k + αm)
+

∞∑
n=0

(k + δn)R+(δn)H
(1)
1 (Zna)eiδnl

(k − δn)H
(1)

1 (Znb)Q+(δn)(δn + αm)(δn + α)Ṁ(−δn)
.

(40a)

If we denote the branch-cut contribution to (39a) by I1bc(α), we can now write

I1(α) = I1res(α) + I1bc(α). (40b)

Consider now the branch-cut integral I1bc(α) which can be rearranged as follows:

I1bc(α) = − 1

2π i


∫

C1

R−(τ )Q(τ)(k − τ)e−iτ l

(τ − αm)Q−(τ )(k + τ)

dτ

(τ − α)
+
∫
C2

R−(τ )Q(τ)(k − τ)e−iτ l

(τ − αm)Q−(τ )(k + τ)

dτ

(τ − α)


.

(40c)

Using the properties

J1(e
iπKa) = −J1(Ka), H

(1)
1 (eiπKa) = H

(2)
1 (Ka) = J1(Ka) − iY1(Ka), (41a,b)

and making the following substitution

k + τ = te−iπ/2, t > 0, (42)

the integral in (40c) can be reduced to the following one written over R
+

I1bc(α) = − 1

π2

∞∫
0

U(t)
e−τ l

(k + it + α)
dt, (43a)

with

U(t) = − R+(k + it)eikl

t (J 2
1 (Kb) + Y 2

1 (Kb)Q+(k + it)(k + it + αm)
. (43b)

If kl is large, the main contribution to the integral in (37a) comes from the end point t = 0.
Hence, after replacing Bessel’s functions by their following asymptotic expression valid for
small arguments

J 2
1 (z) + Y 2

1 (z) ∼ 4

π2z2
, |z| → 0, (44)
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we can take U(t) out from the integral by assigning its value at t = 0. The resultant integral
can be evaluated easily; as a result we obtain

I1bc(α) ≈ −(kb)2 R+(k)

Q+(k)(k + αm)
eiklW−1/2(−il(α + k)), (45)

with

W−1/2(ξ) =
∞∫

0

exp (−u)

u + ξ
du. (46a)

The function W−1/2(ξ) is related to the Whittaker function W−1/2,0(ξ) [13, Chapter 16] by the
relation

W−1/2(ξ) = exp (ξ/2) ξ−1/2W−1/2,0(ξ). (46b)

Finally we obtain

I1(α) = −(kb)2 R+(k)

Q+(k)(k + αm)
eiklW−1/2(−il(α + k))

+
∞∑

n=0

(k + δn)R+(δn)H
(1)

1 (Zna)eiδnl

(k − δn)H
(1)

1 (Znb)Q+(δn)(δn + αm)(δn + α)Ṁ(−δn)

+ 2kπb2

(a2 − b2)

R+(k)eikl

Q+(k)(k + α)(k + αm)
.

(47a)

By proceeding similarly, we get the following approximate expressions for I2(α), I3(α) and
I4(α) valid for kl � 1. The result can be written as

I2(α) = (kb)2 R+(k)

Q+(k)

eikl

(k + δn)
W−1/2(−il(α + k))

−
∞∑

n=0

(k + δn)R+(δn)H
(1)

1 (Zna)eiδnl

(δm + δn)(k − δn)H
(1)

1 (Znb)Q+(δn)(δn + α)Ṁ(−δn)

− 2kπb2

(a2 − b2)

R+(k)eikl

Q+(k)(k + α)(k + δm)
.

(47b)

I3(α) ≈ (kb)2 R+(k)

Q+(k)(αm + k)
eiklW−1/2(il(α − k)) − 1

2

∞∑
n=0

R+(αn)(k + αn)
2eiαnl

αn(α − αn)(αn + αm)Q+(αn)
,

(47c)

I4(α) = (kb)2 R+(k)

Q+(k)(δm + k)
eiklW−1/2(il(α − k) − 1

2

∞∑
n=0

R+(αn)(k + αn)
2eiαnl

αn(α − αn)(αn + δm)Q+(αn)
.

(47d)

Now, the approximate solution of the modified Wiener-Hopf equation reads:
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Ḟ+(b, α)

(k + α)R+(α)

 b

2

∞∑
m=0

J0(ξm)
[
gm + iαmhm

]
(k + αm)R+(αm)

2αm(α + αm)

− i

2π

∞∑
m=0

Sm

k + δm

δm + α
R+(δm)eiδml

−b

2

∞∑
m=0

J0(ξm)
[
gm − iαmhm

]
(k + αm)eiαml

2αmQ+(αm)
I1(α)

+ i

2π

∞∑
m=0

Sm

k + δm

Q+(δm)
I2(α),

(48a)

Ḟ−(b, α)Q−(α)

(k − α)

 −b

2

∞∑
m=0

J0(ξm)
[
gm − iαmhm

]
(k + αm)eiαml

2αm(α − αm)Q+(αm)

+ i

2π

∞∑
m=0

Sm

k + δm

δm − α

1

Q+(δm)

+b

2

∞∑
m=0

J0(ξm)
[
gm + iαmhm

]
(k + αm)R+(αm)

2αm

I3(α)

− i

2π

∞∑
m=0

Sm(k + δm)R+(δm)eiδmlI4(α).

(48b)

2.3. DETERMINATION OF THE EXPANSION COEFFICIENTS

The field in the cavity can be expressed in terms of the waveguide normal modes as follows

u3(ρ, z) =
∞∑

n=0

cne−iβnzJ0(ξn

ρ

a
), (49a)

with

βn =
√

k2 − ξ 2
n

a2
, n = 0, 1, 2 . . . . (49b)

Here ξn’s are the roots of the characteristic equation

J1(ξn) = 0, n = 0, 1, 2 . . . . (49c)

Similarly, in the region 0 < ρ < b, 0 < z < l, u4 (ρ, z) can be expressed in terms of the
following normal waveguide modes

u4(ρ, z) =
∞∑

n=0

(
pneiαnz + qne−iαnz

)
J0(ξn

ρ

b
). (50a)

Now, from the continuity relations (4j–m) we write
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∂

∂z
u4(ρ, 0) =




∂

∂z
u3(ρ, 0) + ik, ρ ∈ (0, a)

0, ρ ∈ (a, b)

, (51a)

and

u4(ρ, 0) = u3(ρ, 0) + 1; ρ ∈ (0, a) , (51b)

∂u4

∂z
(ρ, l) = g(ρ) =

∞∑
m=0

gmJ0(ξm

ρ

b
); ρ ∈ (0, b), (51c)

u4(ρ, l) = h(ρ) =
∞∑

m=0

hmJ0(ξm

ρ

b
); ρ ∈ (0, b). (51d)

Inserting the series expansions of g (ρ) and h (ρ) given in (28b) and (28c) in (51c) and (51d),
respectively, and using (49a) and (50a), we get:

−
∞∑

n=0

iαn

[
pn − qn

]
J0(ξn

ρ

b
) =




∞∑
m=0

iβmcmJ0(ξm

ρ

a
) − ik, ρ ∈ (0, a)

0, ρ ∈ (a, b)

, (52a)

∞∑
n=0

[
pn + qn

]
J0(ξn

ρ

b
) =

∞∑
m=0

cmJ0(ξm

ρ

a
) + 1, ρ ∈ (0, a) , (52b)

∞∑
n=0

iαn

[
pneiαnl − qne−iαnl

]
J0(ξn

ρ

b
) =

∞∑
m=0

gmJ0(ξm

ρ

b
), (52c)

and
∞∑

n=0

[
pneiαnl + qne−iαnl

]
J0(ξn

ρ

b
) =

∞∑
m=0

hmJ0(ξm

ρ

b
). (52d)

Multiplying both sides of (52a) and (52b) by ρJ0(ξl
ρ

b
) and by J0(ξl

ρ

a
), respectively, and

integrating from 0 to b and from 0 to a, respectively, we obtain the following system of
linear algebraic equations:

α0(p0 − q0)
b2

2
= ka2

2
(1 − c0), n = 0, (53a)

αn(pn − qn)
b2

2
J 2

0 (ξn) = −a

b

∞∑
m=0

βmcm

ξn

[
J0(ξm)J1(ξn

a
b
)
]

(ξn/b)2 − (ξm/a)2
+ kba

ξn

J1(ξn

a

b
), n = 1, 2, . . . ,

(53b)

c0 = (p0 + q0) +
∞∑

n=1

(pn + qn)
2b

aξn

J1(ξn

a

b
) − 1, m = 0, (53c)
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cm = 2

abJ0(ξm)

∞∑
n=0

(pn + qn)
ξn

(ξn/b)2 − (ξm/a)2
J1(ξn

a

b
), m = 1, 2, . . . , (53d)

gm = iαm

[
pmeiαml − qme−iαml

]
, m = 0, 1, 2, · · · , (53e)

hm = pmeiαml + qme−iαml, m = 0, 1, 2, · · · . (53f)

This system of equations can be rearranged as

gm − iαmhm = −2iαmqme−iαml, m = 0, 1, 2, · · · , (54a)

gm + iαmhm = 2iαmpmeiαml, m = 0, 1, 2, · · · , (54b)

k(a2 + b2)p0 − k(b2 − a2)q0 + 2kab

∞∑
n=1

(pn + qn)
J1(ξn

a
b
)

ξn

= 2ka2 r = 0, (54c)

αr(pr − qr)
b2

2
J 2

0 (ξr) + 2

b2

∞∑
m=1

(pm + qm)ξmJ1(ξm

a

b
)

∞∑
n=1

βnξrJ1(ξr
a
b
)[

(ξr/b)2 − (ξn/a)2
] [

(ξm/b)2 − (ξn/a)2
]

+kab

ξr

J1(ξr

a

b
)(p0 + q0) + 2kb2

∞∑
m=1

(pm + qm)
J1(ξm

a
b
)J1(ξr

a
b
)

ξmξr

= 2kba

ξr

J1(ξr

a

b
),

r = 1, 2, 3, . . . .

(54d)

To obtain an approximate value for Ḟ+(a, α) and Ḟ−(a, α), we substitute α = k, α1, α2, . . . , αN

in (48a) and α = −δ1,−δ2, . . . ,−δN in (48b). These equations, together with (54c) and
(54d), result in 3(N + 1) equations for 3(N + 1) unknowns. The solution of these simul-
taneous equations yields approximate solutions for Ḟ+(b, k), Ḟ+(b, α1), Ḟ+(b, α2), . . . and
Ḟ−(b,−δ1), Ḟ−(b,−δ2), . . . . By using (31a–b) we obtain

−b

2

J0(ξr)(gr − iαrhr)

2(k + αr)R+ (αr)
= b

2

∞∑
m=0

J0(ξm)(k + αm)

2αm

{
(gm + iαmhm)R+(αm)

αr + αm

− (gm − iαmhm)eiαml

Q+(αm)
Arm

}
− i

2π

∞∑
m=0

Sm (k + δm) ×
{

R+(δm)

δm + αr

eiδml − Brm

Q+(δm)

} (55a)

and

iδr

πZr

J 2
1 (Zrb) − J 2

1 (Zra)

J1(Zra)J1(Zrb)

Q+(δr)fr

(k + δr)
= b

2

∞∑
m=0

J0(ξm)(k + αm)

2αm

{(gm + iαmhm)R+(αm)Crm

+ (gm − iαmhm)eiαml

(αm + δr)Q+(αm)

}
− i

2π

∞∑
m=0

Sm (k + δm)

{
R+(δm)eiδml − 1

Q+(δm)(δm + δr)

}
,

(55b)

with
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Arm =
{
−(kb)2 R+(k)

Q+(k)

eikl

(k + αm)
W−1/2(−il(αr + k)) + 2kπb2

(a2 − b2)

R+(k)eikl

Q+(k)(k + αr)(k + αm)

+
∞∑

n=0

(k + δn)R+(δn)H
(1)
1 (Zna)eiδnl

(k − δn)H
(1)

1 (Znb)Q+(δn)(δn + αm)(δn + αr)Ṁ(−δn)

}
, (55c)

Brm = (kb)2 R+(k)

Q+(k)

eikl

(k + δm)
W−1/2(−il(αr + k)) − 2kπb2

(a2 − b2)

R+(k)eikl

Q+(k)(k + αr)(k + δm)

−
∞∑

n=0

(k + δn)R+(δn)H
(1)

1 (Zna)eiδnl

(δm + δn)(k − δn)H
(1)

1 (Znb)Q+(δn)(δn + αr)Ṁ(−δn)
, (55d)

Crm = (kb)2 R+(k)

Q+(k)(αm + k)
eiklW−1/2(−il(δr + k)) + 1

2

∞∑
n=0

R+(αn)(k + αn)
2eiαnl

αn(δr + αn)(αn + αm)Q+(αn)
,

(55e)

Drm = (kb)2 R+(k)

Q+(k)(δm+k)
eiklW−1/2(−il(δr + k)) + 1

2

∞∑
n=0

R+(αn)(k + αn)
2eiαnl

αn(δr + αn)(αn + δm)Q+(αn)
.

(55f)

By substituting (54a,b) in (55a,b) and also considering (54c–d), we can easily obtain the
three infinite systems of linear algebraic equations with coefficients pn, qn and fn.

3. The radiated far-field and computational results

The radiated field in the region ρ > b can be obtained by taking the inverse Fourier transform
of F(ρ, α). From (7a) and (10) we obtain

u1(ρ, z) = − 1

2π

∫
L

H
(1)
0 (Kρ)

K(α)H
(1)
1 (Kb)

[Ḟ−(b, α) + eiαlḞ+(b, α)]e−iαzdα, (56)

where L is a straight line parallel to the real α-axis, lying in the strip Im(−k) < Im(α) <

Im(k). Utilizing the asymptotic expansion of H
(1)

0 (Kρ) as kρ → ∞

H
(1)

0 (Kρ) =
√

2

πKρ
ei(Kρ−π/4) (57)

we observe that the asymptotic evaluation of the integral in (56), using the saddle point
technique, yields for the diffracted field for k

√
ρ2 + z2 >> kl,

u1(ρ, z) ≈ i

π

{
eikr1

kr1

Ḟ+(b,−k cos θ1)

sin θ1H
(1)

1 (kb sin θ1)
+ eikr2

kr2

Ḟ−(b,−k cos θ2)

sin θ2H
(1)

1 (kb sin θ2)

}
, (58a)

where Ḟ+(a, α) and Ḟ−(a, α) are given by (48a) and (48b), respectively. Here r1, θ1, and
r2, θ2 are the spherical coordinates defined by

ρ = r1 sin θ1, z = r1 cos θ1 (58b)
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Figure 4. Absolute error in the fulfilment of the continuity relation vs. the truncation number N

and

ρ = r2 sin θ2, z − l = r2 cos θ2. (58c)

In the far-field region we have

θ1 ≈ θ2 (59a)

r2 =
√

r2
1 + l2 − 2r1l cos θ1 ≈

{
r1 − l cos θ1, for the phase term

r1, for the amplitude term
(59b)

and (58) reduces to

u1(ρ, z) ≈ i

π

{
Ḟ+(b,−k cos θ1) + e−ikl cos θ1 Ḟ−(b,−k cos θ1)

sin θ1H
(1)
1 (kb sin θ1)

}
eikr1

kr1
. (60)

From (31e) and (54a) we can see that fm and qm decay exponentially with m, so that
the infinite algebraic systems converge very rapidly. Thus, they can be solved by truncating
the infinite matrix and numerically inverting the resulting finite system. The value of the
truncation number N is increased until the final physical quantities, such as the amplitude
of the radiated field or the reflection coefficients, become insensitive up to the desired digit
after the decimal point.

From Table-1 it is seen that the relative errors made in calculating the reflection coefficient
|q0| by choosing N = 2 and N = 20 are 0·5% for k = 1, 1·1% for k = 2 and 1·4% for
k = 3, respectively. Thus, for higher frequencies the error can be reduced by increasing the
truncation number N .
Another effective check on the analysis can be made by showing numerically that the conti-
nuity relation in (52b) is satisfied. Figure 4 displays the variation of the absolute error in the
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Table 1. Reflection coefficient |q0| versus the truncation number N for different of k.

N ka = 0·5, kb = 1, kl = 5 ka = 1, kb = 2, kl = 10 ka = 1·5, kb = 3, kl = 15

2 0·296464 0·203286 0·151387

4 0·295555 0·201966 0·150149

6 0·295277 0·201542 0·149749

8 0·295152 0·201346 0·149561

10 0·295085 0·201237 0·149455

12 0·295022 0·201167 0·149388

14 0·294960 0·201118 0·149342

16 0·294912 0·201084 0·149309

18 0·294875 0·201058 0·149285

20 0·294843 0·201038 0·149266

Figure 5a. Normalized field amplitude vs. the observa-
tion angle for different values of kb with ka fixed.

Figure 5b. Normalized field amplitude vs. the observa-
tion angle for different values kb with ka fixed.

fulfillment of the continuity condition in (52b) at ρ = 0, i.e., ε =
∣∣∣∣ ∞∑
n=0

pn + qn − cn − 1

∣∣∣∣ vs.

the truncation number N. The absolute error is less than 1% for N ≥ 14
Figures 5a,b show the variation of the normalized diffracted field amplitude |u1 (r1, θ1) /

u1 (r1, 0) | vs. the observation angle θ1, for different values of k (b − a) when ka is fixed.
Note that the directivity of the stepped waveguide increases with increasing values of the

step height k (b − a) . As can be shown from Figure 5b, when kb exceeds 3·83 (the second
zero of J1), more than one duct mode can be cut-on. For instance, choosing kb = 4 a lobed
radiation pattern with a null near θ1 = 73◦ is observed.

From Figure 6, one can see that, when kb is fixed, the amplitude of the radiated field
increases with increasing values of ka.

Figures 7 and 8 depict the variations of the reflection coefficients |c0| at z = 0 and |q0| at
z = l with ka for different values of kl and with kl for different values of kb, respectively.
We observe that, when ka and kb increase, the moduli of the reflection coefficients |c0| and
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Figure 6. 20 log10 |u1 (r1, θ1) kr1| vs. the observation
angle for different values of ka while kb and kl are
fixed.

Figure 7. Amplitude of the reflection coefficient |c0|
vs. ka, for different values of kl while kb is fixed.

Figure 8. Amplitude of the reflection coefficient |q0|
vs. kl, for different values of kb.

Figure 9. Comparison with the exact solution related to
a semi-infinite cylindrical pipe.

|q0| decrease and the transmission efficiency increases as expected. Notice that |c0| and |q0|
exhibit an oscillatory behavior when kl varies.

Finally, Figure 9 displays the amplitude of the normalized radiated field obtained in the
present work for ka = 2·6, kb = 2·84, kl = 10, the theoretical results related to a rigid
cylindrical pipe of radius kb = 2·84, derived by [1] and the experimental data provided by
[9]. Since our result is obtained under the assumption a < b, it is not possible to reduce it
to the case of a semi-infinite cylindrical pipe by letting a → b. However, we can see that the
results obtained in this work approache the exact solution for k (b − a) = 0·24 < 1 and fits
quite well with the experimental data.
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4. Concluding remarks

The radiation of sound from a stepped circular cylindrical waveguide has been investigated by
using the mode-matching method in conjunction with the Wiener-Hopf technique. The prob-
lem was first reduced to a system of Fredholm integral equations of the second kind and then
solved approximately by iteration for large kl. The solution involves three systems of linear
algebraic equations involving three sets of infinitely many unknown expansion coefficients.
A numerical solution to these systems has been obtained for various values of the stepped
waveguide parameters, such as waveguide radius a, aperture radius b, and horn length l. In the
case where the step height is small, the results obtained in this paper have been compared with
the exact solution related to a semi-infinite cylindrical pipe and the agreement was found to be
very satisfactory. Furthermore, it has been shown numerically that the error in the fulfilment
of the continuity relation (52b) is satisfiactory. This can be considered as a good check for the
reliability of the analysis made in this paper.
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